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Coupling between networks is widely prevalent in real systems
and has dramatic effects on their resilience and functional proper-
ties. However, current theoretical models tend to assume homo-
geneous coupling where all the various subcomponents interact
with one another, whereas real-world systems tend to have var-
ious different coupling patterns. We develop two frameworks to
explore the resilience of such modular networks, including spe-
cific deterministic coupling patterns and coupling patterns where
specific subnetworks are connected randomly. We find both ana-
lytically and numerically that the location of the percolation phase
transition varies nonmonotonically with the fraction of intercon-
nected nodes when the total number of interconnecting links
remains fixed. Furthermore, there exists an optimal fraction r∗

of interconnected nodes where the system becomes optimally
resilient and is able to withstand more damage. Our results sug-
gest that, although the exact location of the optimal r∗ varies
based on the coupling patterns, for all coupling patterns, there
exists such an optimal point. Our findings provide a deeper under-
standing of network resilience and show how networks can be
optimized based on their specific coupling patterns.

interacting network | resilience | percolation | optimal phenomenon

Network science has been applied to study resilience of com-
plex systems including infrastructures, financial systems,

and others (1–6). Real-world networks have distinct modular
structures where groups of nodes are tightly connected to oth-
ers within their same group, while being loosely connected to
other modules (7–13). The current modular network models for
these situations typically assume all of the modules have the
same probability to be connected to one another, yet in real
networks modules may connect only to some specific modules.
Understanding the topological structures of real-world networks
enables researchers to better reveal their intrinsic behaviors
from different perspectives (14–22). Real-world networks are not
homogeneous and often composed of modules, with nodes more
densely connected to other nodes within the same module than
to the rest of the network (23–26). In other cases, subnetworks
of one kind (e.g., a power grid, energy system) interact with sub-
networks of other types (e.g., communications systems, social
networks), leading to an encompassing network of networks that
incorporates different kinds of subnetworks with different types
of interactions within and between them (27–29). Such intercon-
nected networks can take various forms based on the specific
coupling patterns between the various subnetworks. For the case
of interdependent networks, where the interactions between sub-
networks involve dependencies, different coupling patterns such
as a tree, a loop, etc., have been investigated (30, 31). These
studies revealed that the resilience of coupled interdependent
networks often depends on the specific coupling patterns and
also suggest possible methods to mitigate the collapse of real
systems (29–37).

However, a precise understanding of how interconnected net-
works and how the specific nodes with the interconnections
(interconnected nodes) affect the resilience of the overall inter-
connected network has been lacking. Most studies on inter-
connected networks (38, 39) have considered all-to-all coupling
where the subnetworks could all be interconnected to one
another as opposed to having a specific coupling pattern. Such
patterns can include a deterministic coupling pattern, where
coupling between given pairs of subnetworks is predefined to
attain some larger overarching structure, and random coupling
where specific pairs of subnetworks are chosen randomly to have
connections between one another.

Furthermore, in interconnected networks since each link has a
cost and the interconnected links tend to be most costly (e.g., if
they are long-distance power lines or long highways connecting
disparate cities), it is often impractical to increase the number
of such connections and rather it is preferable to more optimally
allocate a fixed number of connections (25, 26). Such optimiza-
tion could, for example, improve resilience of a power grid in the
face of a weather storm or other failures.
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Here, we develop two analytical frameworks for understand-
ing the resilience of a modular interacting network with different
coupling patterns of the subnetworks, including deterministic
coupling patterns like a star, a tree, etc., and random coupling
patterns like a random regular (RR) pattern, a pattern following
a Poisson distribution, and one that follows a power-law distri-
bution. Surprisingly, for all of these various coupling patterns,
we find that there exists an optimal coupling point at which the
system shows remarkable resilience and is best able to withstand
failures at the level of the entire system. Our results general-
ize known results and provide theoretical support for efforts at
optimizing system resilience.

Theory
Real systems are often composed of numerous subnetworks with
different attributes coupled together to maintain functioning.
Here we present a model based on a modular interacting net-
work (MIN), where each subnetwork has connections to other
specific subnetworks. In this manner, we have a network of
networks, where we can consider the larger network of connec-
tions between the subnetworks as a typical network where each
node represents a subnetwork as shown in Fig. 1. The model
can use diverse coupling patterns, which include deterministic
coupling patterns between subnetworks and random coupling
patterns where subnetworks connect randomly or follow some
distribution.

To understand this model from a theoretical perspective, we
use generating functions, which have been widely applied in
studying percolation problems including epidemic spreading and
cascading failures (36, 38–41). These generating functions can
be used to incorporate information on the degree distribution
pk using a concise power series. Beginning with the appropriate
generating function of the degree distribution, one can analyt-
ically obtain solutions for the size of the giant component and
determine the percolation threshold, i.e., the maximum fraction
of failures, (1− p), for which the network collapses and becomes

AB

DC

Fig. 1. Demonstration of a modular interacting network. (A) The degree
distribution of the overall network follows a power-law distribution with
some subnetworks connecting to many others, whereas most subnetworks
connect to only a few others. (B and C) Within the subnetworks, the degree
distribution can follow, e.g., a Poisson distribution (B) or a power-law
distribution (C), respectively. (D) The links between any two connected sub-
networks follow some interdegree distribution with some subset of prede-
fined nodes in each subnetwork connecting to nodes, called interconnected
nodes, in the other subnetwork.

disconnected (see SI Appendix for details). For a deterministic
coupling pattern, the coupling between given pairs of subnet-
works is predefined to take a certain form, e.g., a star or tree
pattern of a network of networks (SI Appendix). The connectiv-
ity links within each subnetwork and between subnetworks are
assumed to be described by independent degree distributions.
For convenience, we provide a summary of all variables and their
meanings in Table 1.

Next, we determine the appropriate generating function of the
degree distribution for our case to be

Gi(xii , xji)=(1− ri)
∑
k i

Ps(k
i)x k i

ii +

ri
∑
k i

Ps(k
i)x k i

ii

∏
j∈Γi

∑
k ji

Pc(k ji)x k ji

ji ,
[1]

where ri represents the fraction of nodes within subnetwork
i that can have links to the other subnetworks. For simplic-
ity in analyzing the resilient properties of the system, we let
ri = r , i = 1, . . . ,m in Eqs. 1 and 2 and continue with that
assumption for the remainder of the derivations. The above
equation, Eq. 1, can be understood to consist of two parts
that consider whether a given node within subnetwork i has
solely connections within i or whether it also has connec-
tions to subnetwork j . First, the term (1− ri)

∑
k i Ps(k

i)x k i

ii

defines the distribution for the (1− ri) fraction of nodes that
do not have any links to other subnetworks and thus follow a
degree distribution according to Ps(k

i) within subnetwork i . The
second term, ri

∑
k i Ps(k

i)x k i

ii

∏
j∈Γi

∑
k ji Pc(k ji)x k ji

ji , describes
the case for the ri fraction of nodes that also have connec-
tions to other subnetworks. These nodes are still connected
within their own subnetwork according to the same degree dis-
tribution, Ps(k

i), but they also connect to other subnetworks
according to a degree distribution Pc(k ji), where j is another
subnetwork among the Γi set of subnetworks that are neighbors
of subnetwork i .

For the case of a random coupling pattern between
subnetworks following a distribution Pu(K ), the term∏

j∈Γi

∑
k ji Pc(k ji)x k ji

ji can be similarly simplified by consider-
ing it as a term within an appropriate generating function. In
this case, Eq. 1 can be written as

Gi(xii , xji) = (1− ri)
∑
k i

Ps(k
i)x k i

ii +

ri
∑
k i

Ps(k
i)x k i

ii

∑
K

Pu(K )

[∑
k ji

Pc(k ji)x k ji

ji

]K
,

[2]

where Ps(k
i) is the degree distribution within each subnetwork,

and Pc(k ji) is the interdegree distribution between subnetwork
i and subnetwork j . The first term (1− ri)

∑
k i Ps(k

i)x k i

ii is the
same as in Eq. 1 and describes the connections of the 1− ri frac-
tion of nodes within subnetwork i that do not connect to other
subnetworks. The second term is for the ri fraction of nodes
which also have interconnections to subnetwork j , where the
number of subnetworks, K that i connects to follows a distri-
bution Pu(K ). Here,

[∑
k ji Pc(k ji)x k ji

ji

]
is similar to the state

variable x in the generating function of a single network. After
randomly removing a 1− p fraction of nodes from the system,
the size of the giant component within the random coupling
pattern can be described as

S = S̄ ·Si , [3]
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Table 1. Variables and their definitions

Variable Definition

Ps(ki) The degree distribution of a node with intradegree ki in
subnetwork i

Pc(kji) The degree distribution of a node with interdegree kji

between subnetworks i and j
Pu(K) The degree distribution of the subnetworks with degree K

in the MIN system
m No. of subnetworks
M No. of links in the MIN system
Ni No. of nodes in subnetwork i
Ñ No. of nodes in the whole MIN system, Ñ = m ·Ni

ki The mean intradegree of nodes in the subnetwork i and
for simplify let ki = k, i = 1, . . . , m

kij The mean interdegree of nodes between subnetworks i
and j and for simplify let kij = k̄, i, j = 1, . . . , m, and i 6= j

K The average degree of a subnetwork in the random
coupling pattern

K̃ The average degree of nodes in the whole MIN system
and K̃ = 2M

Ñ
λ The power-law exponent of MIN follows the power-law

coupling pattern
ri The fraction of interconnected nodes within subnetwork i

that have both intra- and interlinks, and for simplify
let r = r1 = r2 = · · ·= rm

r∗ The r value, at which pc has the minimum value
Si The fraction of giant component in subnetwork i after

undergoing failures
S̄ The fraction of largest (giant) component composed

of vertices (subnetworks) for the original MIN system
S The fraction of giant component composed of nodes in the

whole MIN system after undergoing failure

where S̄ is the fraction of subnetworks that remain connected
to one other in the overall giant component (this is determined
based on Pu(K )) for a random coupling pattern, and Si is the
fraction within each subnetwork within the giant component. Si

is given by

Si = p[1−Gi(1− p(1− fii), 1− p(1− fji))], [4]

where fii and fji are the probabilities that a randomly chosen
inner link within subnetwork i and interlink between subnet-
works i and j do not belong to the giant component of the MIN,
respectively. Here, if i = 2 (two interacting subnetworks), Eq. 4
reduces to equation 3 in ref. 38. Furthermore, the critical thresh-
old pc at which the system fails and connectivity is lost can be
obtained from the limit of Eq. 4 at S = 0.

Coupling between subnetworks can significantly affect the
resilience of the system in that it increases the resilience, since
even if a single subnetwork is internally disconnected, there can
still be sufficient connectivity among the various subnetworks,
allowing the system to remain resilient at what was the original
transition point for a single network (38).

Results
Deterministic Coupling Patterns. The first basic pattern we con-
sider is the star coupling pattern as shown in SI Appendix, Fig.
S1A. For the star coupling pattern consisting of m subnetworks,
we obtain the analytical expression of S from Eqs. 1 and 4,

S = p

[
1− 1

m
fii −

m − 1

m
fjj

]
, [5]

where m is the total number of subnetworks. The result of Eq. 5
is general for any degree distribution within and between subnet-

works; however, to better demonstrate the result, we consider a
specific case where K̃ is the average degree of the MIN system,
and the degree distributions within and between subnetworks fol-
low Poisson distributions with inner average and interaverage
degrees k and k̄ , respectively (more details in SI Appendix for
the case of power-law distributions). For this case, the expres-
sions of fii and fji are shown in SI Appendix, Eq. 7. One can
observe that simulation results agree well with analytical results
in SI Appendix, Fig. S2 for different values of parameters. Find-
ing the limit of Eq. 5, with the appropriate values of fii and fij , at
S = 0 we can obtain the critical threshold pc numerically. For the
limiting case ri = r = 1 for all i = 1, . . . ,m and k = k̄ , the critical
threshold pc can be expressed as

pc =

√
m − 1− 1

(m − 2)k
[6]

(SI Appendix, Eqs. 10–14).
The nature of the coupling between subnetworks is con-

trolled by r , the fraction of nodes that are predefined to have
interconnection links. From Fig. 2A, one can observe that pc ,
defined by the location p of the maximum in the size of the
second largest component S2 (as shown in SI Appendix, Fig.
S2B), becomes gradually smaller as r increases from near 0
to around r = 0.2 for different m . As r increases, an increas-
ing number of interconnected nodes act as hubs, which allows
the system to become more resilient. System connectivity here
not only is maintained via the links within the subnetworks,
but also begins to be more impacted by the links connecting
to the other subnetworks via the interconnected nodes. Thus,
even if there is no path between two nodes in the same sub-
network, it is still possible have a path between them via their
connections to other subnetworks. As r increases to the optimal
transition value r∗, the system reaches the minimal pc , where
it is optimal, i.e., most resilient to withstand random failures or
perturbations.

When r further increases, for r > r∗, the system becomes
more vulnerable since pc increases. For this stronger coupling
case, more nodes become interconnected nodes, but due to the
fixed number of total links there are fewer intralinks within the
subnetworks. Thus, the network connectivity within these sub-
networks eventually becomes small to the point that they may
collapse internally.

Similarly, this optimal transition can also be observed for dif-
ferent values of K̃ and k̄ , as shown in Fig. 2 B and C. We
also plot the optimal transition point r∗ as a function of m , K̃ ,
and k̄ in Fig. 2 D–F, respectively. The results indicate that r∗

decreases as m increases for fixed K̃ and k̄ . As K̃ increases, r∗

also increases for fixed m and k̄ . This is because as K̃ increases,
the system becomes more resilient, and pc for all values of r
becomes smaller. Finally, as k̄ increases, r∗ decreases for fixed
m and K̃ .

The binary-tree coupling pattern is another important case
where a general expression of S can be obtained from Eqs. 1,
3, and 4. The simplified solution is

S =

L∑
l=1

2l−1Si

2L− 1
, [7]

where L (L= 2 also corresponds to a star coupling pattern with
m = 3) is the number of layers of the binary tree, l represents the
layer, and Si is described in SI Appendix, Eqs. 27 and 28. For this
case, we consider the resilience of the system with Poisson and
power-law degree distributions within and between the subnet-
works (more details in SI Appendix). Just as for the star coupling
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Fig. 2. (A–C) Analytical predictions (thick lines) compared with simulation results (symbols) for pc as a function of r for different m, K̃, and k̄ for a star
coupling pattern. Analytical results are from Eq. 5 and SI Appendix, Eq. 12. The parameters are K̃ = k̄ = 3 in A, m = 3 and k̄ = 3 in B, and m = 3 and K̃ = 3 in
C, respectively. D–F show the results of r∗ as functions of m, K̃, and k̄. The parameters are the same as for A–C. Simulation results are averaged over 1,000
independent realizations with Ni = N = 107 for each subnetwork i = 1, 2, . . . , m.

pattern, here too we also observe the existence of an optimal r∗

for various sets of parameters (further details in SI Appendix, Fig.
S4 C–E).

Aside from these two cases, the general framework devel-
oped above allows for studying the structural robustness of any
deterministic coupling patterns. Our results here suggest that the
existence of an optimal r∗ is general for most, if not all, determin-
istic coupling patterns and highlights the importance of carrying
out optimization in real systems.

Random Coupling Patterns. We now turn our attention to cou-
pling patterns based on random coupling. Specifically, we study
the system resilience for RR, Poisson, and power-law coupling
patterns.
RR coupling pattern. For the RR coupling pattern, we assume
that each subnetwork is connected to exactly K other subnet-
works. We present here the case where connections within and
between subnetworks follow the Poisson degree distribution with
average degrees k and k̄ , respectively (see SI Appendix for the
case of power-law distributions), such that ki = k and kij = k̄ ,
i , j = 1, . . . ,m in Eqs. 3 and 4. The analytical expression that is
obtained is (SI Appendix, Eq. 39)

S = p(1− fii), [8]

fji = ekp(fii−1)+Kk̄p(fji−1). [9]

Comparisons between analytical and simulation results for S as
a function of p are shown in SI Appendix, Fig. S6 for different
parameters. One could find that simulation results agree well
with analytical results. The expressions for p with respect to fii
can be found from the formulas of fii and fij (see SI Appendix,

Eqs. 39 and 41 for more details), and the critical threshold is
found when fii→ 1,

pc =
(k + k̄K )−

√
(k − k̄K )2 + 4k k̄Kr

2k k̄K (1− r)
. [10]

For keeping the number of links fixed, it can be determined that
K̃ = k + r k̄K (SI Appendix, Eq. 43). As shown in Fig. 3 A–C, pc
decreases, and the system becomes more resilient as k̄ , K̃ , or K
increases. There, it is also observed that there exist optimal val-
ues of r for all of the different parameter sets of k̄ , K , and k . For
r < r∗, when the total number of links is fixed, as the interlinks
between subnetworks increase, hubs appear and the resilience is
enhanced. When r = r∗, the system is at its most resilient point.
If r is further increased to r > r∗, the system becomes more
vulnerable and pc increases. In this case, the optimal transition
point, r∗, which corresponds to the minimum pc value,

r∗= {r |min(pc)}. [11]

The value of r∗ as a function of k̄ , K , and k is shown in Fig.
3 D–F. The results demonstrate that the system becomes more
resilient when increasing interconnectivity or total system con-
nectivity. Furthermore, r∗ decreases as k̄ increases and as K̃
decreases, as shown in Fig. 3 D and E. While for increasing K the
system becomes more robust, the corresponding r∗ decreases as
K increases, as shown in Fig. 3 C and F.
Poisson coupling pattern. Another example of coupling accord-
ing to a random degree distribution is the Poisson coupling
pattern where we assume that each subnetwork is connected to

4 of 8 | PNAS
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A B C

D E F

Fig. 3. (A–C) Analytical predictions (thick lines) compared to simulation results (symbols) for the RR coupling pattern. We show pc as a function of r for
different k̄, K̃, and K based on Eq. 10. The parameters are (A) K̃ = 6 and K = 3, (B) K = 3 and k̄ = 3, and (C) k̄ = 3 and K̃ = 6, respectively. (D–F) r∗ as a
function of k̄, K̃, and K from Eq. 11. The parameters correspond to those in A–C. The value of pc is determined by the location of the peak value of S2, as
shown in SI Appendix, Fig. S6C. Simulation results are averaged over 1,000 independent realizations with m ·Ni = 104 · 106, where m and Ni are the number
and size of the subnetworks, respectively.

an average of K other subnetworks. We present here the case
where the connections within and between the subnetworks also
follow the Poisson degree distribution with average degrees k
and k̄ , respectively (see SI Appendix for the case of power-law
distributions); the analytical expressions derived from Eqs. 3 and
4 (SI Appendix, Eqs. 46 and 47) are

S̄ = 1− e−KS̄ ,

S = p(1− fii)S̄ ,
[12]

and

fii = (1− r)ekp(fii−1) + rekp(fii−1)eK(e
k̄p(fji−1)−1),

fji = ekp(fii−1)eK(e
k̄p(fji−1)−1)e k̄p(fji−1),

[13]

where k and k̄ are the average degree within each subnetwork
and the average degree between the subnetworks, respectively.
SI Appendix, Fig. S8 shows that analytical results for S as a
function of p match the simulation results. Similarly, the critical
threshold pc can be found numerically via the limit where S→ 0
using Eqs. 12 and 13, as shown in Fig. 4 A–C. For the limiting
case of r = 1, we obtain

pc =
(k + k̄ + k̄K )−

√
(k + k̄ + k̄K )2− 4k k̄

2k k̄
. [14]

Assuming the total number of links to be constant, we can
define K̃ = k + r k̄K (details in SI Appendix, Eq. 43) and find the
optimal coupling value r∗ from Eqs. 12 and 13.

Fig. 4 A–C shows that the system exhibits an optimal transi-
tion point at r∗ for all values of parameters of K , K̃ , and k̄ .
As K increases, r∗ gradually decreases. A similar trend is seen

with k̄ increasing but as K̃ increases, the opposite occurs and
r∗ actually increases as shown in Fig. 4 D–F. The results again
demonstrate the existence of an optimal resilience that is valid
for all parameter values. Here, for the simulation results, the
value of pc is determined by the largest negative slope of S as a
function of p (42).
Power-law coupling pattern. The final case we consider is a
power-law coupling pattern with a power-law exponent λ. Each
subnetwork is connected to an average of K other subnetworks,
although some will be connected to far more due to the power-
law distribution. Here we present results for the case where the
connections within and between subnetworks follow a Poisson
distribution with average degrees k and k̄ . The analytical results
can be found from Eqs. 3 and 4, respectively (see SI Appendix,
Eqs. 54–56 and Fig. S10 for more details). The resulting
solution is{

Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))],

S = S̄ ·Si ,
[15]

where fii and fji are described in SI Appendix, Eq. 54. We
observe excellent agreement between the analytical and simula-
tion results for different parameters in SI Appendix, Fig. S10. For
the case of connections within and between subnetworks both
following power-law distributions, see SI Appendix, Eqs. 57–59
and Fig. S11. The value of pc can be numerically obtained from
Eq. 15 for fii→ 1. We observe a similar phenomenon to that of
the previous cases, with an optimal r∗ existing for all values of λ,
k̄ , and K, as shown in Fig. 5 A–C. In this case, we see that as λ
decreases, r∗ increases (Fig. 5D). The value of the optimal r∗ is
shown for different values of the parameters k̄ and K in Fig. 5 E
and F.

We note a discrepancy between simulation and theoretical
results for this case in Fig. 5. This is because our analytical
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A B C

D E F

Fig. 4. (A–C) Analytical predictions (thick lines) in comparison with simulation results (symbols) for the Poisson coupling pattern. We show pc as a function
of r for different k̄, K̃, and K based on Eqs. 12 and 13. The parameters are (A) K̃ = 12 and k̄ = 4, (B) K = 4 and k̄ = 4, and (C) K̃ = 12 and K = 4. (D–F) r∗ as a
function of K, K̃, and k̄, for parameters corresponding to those of A–C. Simulation results are averaged over 1,000 realizations with the network size given
by m ·Ni = 104 · 106.

results assume a perfect power law, but the simulations rely
on an approximation using defined limits. Furthermore, there
also exist finite-size effects since the number of modules
that can be formed is limited (due to limited computation
power) since we need each module to have a reasonable
large size.

Analysis of a Real Network. We next consider an example of a
real-world network of merger and acquisitions (M&A). Due to
geopolitical factors, and economic frictions, financial acquisi-
tions are often easiest to carry out locally. At the same time,
with the increasing spread of capital on a global scale, most
nations view greater openness as a vital component of the path
to prosperity. Therefore, a critical question is how much global
economic development should be supported as opposed to main-
taining local development. This has become even more acute for
policymakers due to the current coronavirus pandemic, which
has dramatically interrupted international travel and highlighted
risks of globalization (43–47). Furthermore, due to limited capi-
tal, companies and organizations are constantly forced to assess
risks and benefits of M&A between and within regions to
maximize synergies and growth.

Based on the above motivation, we applied our model to
the two largest M&A regions, Asia and America, over the past
18 y. Here, we focus on the largest cluster of the M&A network,
reflecting the key economic relationships. In this M&A network,
nodes denote global companies or organizations and links rep-
resent M&A transactions. (General information and statistics on
this network are summarized in SI Appendix, Table S1). As in
our theoretical model, we find a strong optimally resilient point
for the M&A network between Asia and America (Data and
Methods).

To keep the total number of connections in the network fixed,
we rewire links from being within subnetworks to be between

subnetworks. This changes the fraction of interconnected nodes,
r , in the original network to be r + ∆r (for details see Data and
Methods). The inverse, i.e., changing links between the subnet-
works to being within the subnetworks, will decrease the value
of r by ∆r . Fig. 6A shows pc as a function of ∆r for the real
M&A network and the network model with similar parameters.
The results clearly show an optimal r∗≈ 0.133, which is consis-
tent with the corresponding network model. This implies that
the optimal resilience r∗ can be predicted from the simulations.
The value of pc has been determined by the peak value of S2,
as shown in Fig. 6B. The comparison of S and S2 as a func-
tion of p with different ∆r for the network model is shown
in SI Appendix, Fig. S13. Although economists have often pro-
moted the superiority of open economic borders over closed
ones, the question of exactly “how much to open up globally”
has become a pivotal and divisive issue. From the perspective of
resilience, we hope that our results offer decision makers some
approaches to making a suitable decision between openness and
protectionism.

Discussion
We have introduced a modular interacting network, where a
large number of subnetworks interact together following spe-
cific coupling patterns, where only some fraction, r , of nodes in
each subnetwork are interconnected nodes, i.e., nodes that can
have links to nodes in other subnetworks. We consider two gen-
eral cases of coupling between the subnetworks, deterministic
coupling patterns and random coupling patterns following some
distribution. We determined analytically and via simulations the
resilience of the systems having these various coupling patterns.
Our results show that if the number of links is unchanged,
there exists an optimal fraction of interconnected nodes, r∗, for
which the system is most resilient. This optimal phenomenon
exists for all of the coupling patterns we considered. Finally, an
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Fig. 5. (A–C) Analytical predictions (thick lines) compared with simulation results (symbols) for a power-law coupling pattern with minimum degree kmin = 2
and maximum degree kmax = 1,000. The value of pc from Eq. 15 is shown as a function of r for different parameters λ, k̃, and K. The parameters are (A)
K̃ = 6, k̄ = 2.5, and K = 2.0; (B) K̃ = 6, λ= 4.5, and K = 2.0; and (C) K̃ = 6, λ= 4.5, and k̄ = 2.5. (D–F) We show r* as a function of λ, k̄, and K, with the other
parameters as in A–C. Simulation results are averaged over 100 independent realizations with networks of size m ·Ni = 105 · 105.

optimal coupling was also found in the real M&A network
between Asia and North America. These results may provide
theoretical support for decision makers to build robust economic
systems. Additionally, we bridged the analytical framework from
a single network to a modular interacting network from a more
realistic perspective. Although our theory here is for studying
the resilience of interconnected networks, it can be extended
to study the resilience of broader coupling relationships like
interdependent networks or multiplex networks.

Data and Methods
The real data are obtained from the Zephyr M&A database (48).
The data mining and analysis are processed using the igraph

package of the R software (49). To simulate changes in the
real network, we randomly choose a ∆r fraction of nodes that
were not interconnected to become interconnected nodes or
vice versa. We then update the fraction of interconnected nodes
to be r = rreal + ∆r , with r = rreal for ∆r = 0. To maintain a
fixed number of total links, we rewire intralinks to become inter-
links by replacing the intralinks of the ∆r > 0 fraction of nodes
within each subnetwork to randomly connect to the r fraction
of interconnected nodes in the other subnetwork. Similarly, for
∆r < 0, total links are kept fixed by randomly rewiring inter-
links connecting the |∆r | fraction of nodes to become intralinks.
We then built the network model to match the parameters of
the real network. The datasets generated and analyzed in the

BA

Fig. 6. (A) Comparison of simulation results on the real M&A network (red) and a network model for the critical threshold pc as a function of ∆r for the
same parameters. For the network model, the average pc value (light blue), the maximum value (pink), and the minimum value (blue) are obtained from
5,000 independent realizations. The simulation results for pc are determined using the location of the peak in S2. (B) S2 as a function of p for different ∆r
for the real network. The parameters of the network model are similar to those of the real network. The simulated results of the real network are averaged
over 5,000 independent realizations.
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current study follow the database utilization guide of the data
provider (50).

Data Availability. Some study data are available upon request.
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